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Scattering of waves by vertical barriers in infinite-depth water has received much 
attention due to the ability to solve many of these problems exactly. However, the 
same problems in finite depth require the use of approximation methods. In this 
paper we present an accurate method of solving these problems based on a Galerkin 
approximation. We will show how highly accurate complementary bounds can be 
computed with relative ease for many scattering problems involving vertical barriers 
in finite depth and also for a sloshing problem involving a vertical barrier in a 
rectangular tank. 

1. Introduction 
Two-dimensional problems involving the scattering of water waves by thin vertical 

barriers in deep water, when described by classical linear water-wave theory, have 
the property that they can be solved analytically in closed form with the important 
features such as the reflection and transmission coefficients expressible in terms of 
known functions or definite integrals. Thus Ursell (1947) solved for the velocity field 
everywhere in the case of a thin vertical barrier immersed to a depth a beneath the 
surface of deep water, in the presence of incident waves of wavelength A(= 2xlk) .  
In particular he showed that the modulus of the ratio of reflected to incident wave 
elevation, JRJ, could be expressed in terms of modified Bessel functions of argument 
ka. Earlier, Dean (1945) had obtained similar results for the scattering of an incident 
wave by a barrier extending downwards from a point a distance a below the free 
surface. 

Subsequently other authors, notably Porter (1974), Mei (1966) and Lewin (1963) 
showed that the scattering of an incident wave by any number of in-line vertical 
barriers with arbitrary gaps between them, in deep water, could, in principle, be 
solved in closed form. Evans (1970) obtained such a solution for the scattering of 
an incident wave by a totally submerged vertical barrier. For two identical parallel 
vertical surface-piercing barriers, Levine & Rodemich (1958) showed that in this case 
also an explicit expression was possible although they did not obtain the detailed 
solution. Jarvis (1971) solved the complementary problem of two identical semi- 
infinite barriers extending indefinitely downwards from a point a beneath the surface 
and he obtained curves of reflection and transmission coefficients as a function of 
frequency, barrier spacing, and depth of submergence of the barriers, showing how 
for particular configurations, 1R1 = 0. In contrast to these exact results recently 
Parsons & Martin (1994) have shown how numerical results for thin arbitrarily ori- 
ented straight barriers or curved barriers can be obtained by consideration of the 
solutions of certain hypersingular integral equations. 
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The reason for the explicit nature of solutions for two-dimensional vertical-barrier 
problems in infinitely deep water is as follows. Solutions of the two-dimensional 
Laplace equation can be found amongst complex analytic functions, and for vertical 
thin barriers the condition of no flow across the barriers and the mixed free-surface 
condition can together be expressed as conditions on the real and imaginary parts 
of a single new so-called reduced complex potential being a simple combination of 
the original complex potential and its derivative. The problem is thereby reduced 
to finding a single simpler complex function satisfying certain conditions and having 
certain singularities followed by solving a first-order ordinary differential equation 
for the original potential. Although straightforward in principle, the details can 
be complicated, no more so than in a generalization of the technique provided by 
John (1948) in considering the scattering by a surface-piercing barrier making an 
angle n/2n (n an integer) to the horizontal. 

Because of the difficulties in the technique and also because the method fails for 
obliquely incident waves where complex function theory is no longer applicable, many 
authors have sought good approximation techniques. Thus Evans & Morris (1972) 
obtained good complementary bounds for the reflection coefficient for obliquely in- 
cident waves on a surface-piercing barrier in infinitely deep water. They set up the 
problem in two distinct ways resulting in singular integral equations for both the hori- 
zontal velocity across the gap below the barrier and also the potential difference across 
the barrier. By using the exact result of Ursell (1947) for normally incident waves as a 
one-term variational approximation, they obtained accurate upper and lower bounds 
in the form of a definite integral for the reflection coefficient. By repeating the tech- 
nique for the two surface-piercing barriers considered by Levine & Rodemich (1958) 
they were able to show that in normally incident waves, for certain values of the 
spacing and length of the barriers, and incident wave frequency, the transmission 
coefficient vanished, whilst for other values the reflection coefficient vanished. The 
possibility of wave-interference effects between two or more bodies producing a zero 
reflection so that the bodies appeared transparent to the waves - apart from a phase 
change - was well-known but this seemed to be the first indication that combinations 
of partially immersed bodies could block the waves completely. Confirmation of this 
result was provided by Newman (1974) who used a matched asymptotic expansion 
approach to consider the scattering by two closely spaced barriers in infinitely deep 
water and confirmed the predictions of Evans & Morris (1972), and McIver (1985) 
who considered the general problem of two arbitrarily spaced surface-piercing barriers 
in finite depth. 

With the exception of the work of McIver (1985) all the above-mentioned problems 
were in infinitely deep water and involved either explicit solutions or approximate 
solutions. McIver (1985) used matched eigenfunction expansions and orthogonal 
expansions involving trigonometric functions to obtain an infinite system of equations 
with an infinite number of unknowns. A similar approach for finite water depth was 
used by Smith (1983) for the scattering of an incident wave by a single surface-piercing 
barrier, and repeated by C.M. Linton (personal communication). The convergence of 
these solutions is slow and the accuracy of the results open to question. Thus even 
for the simplest problem of the single barrier in finite depth, Linton needed to solve 
a 400 x 400 system to obtain results which now turn out to have only two-figure 
accuracy. 

The aim of the present work is to consider a number of vertical-barrier problems 
with gaps, using classical linear water-wave theory, and to provide a method which 
gives extremely accurate results for the reflection and transmission coefficients and 
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other properties with minimum effort, based on deriving complementary bounds on 
quantities of interest. The problems to be considered include the scattering of an 
obliquely incident plane wave by either a single vertical barrier with an arbitrary 
number of gaps in finite-depth water, or a pair of identical vertical barriers where 
symmetry considerations enable us to reduce the problem to two simpler problems 
each involving a single barrier with gaps. We also consider the sloshing frequencies 
in a rectangular tank containing a plane vertical baffle with gaps parallel to one 
pair of sides. The two-dimensional version of this problem was considered by 
Evans & McIver (1987) using matched eigenfunction expansions. 

In all of these problems the approach is the same, namely to derive an integral 
equation for a function u(y) proportional to the horizontal fluid velocity in the gap 
interval L, and to express an integral property of the solution over the gap in terms 
of a real quantity A having physical significance. Thus in operator notation, we shall 
obtain for each problem 

K U = W O ,  U E  L,, (1.1) 

(U7VO)  = A (1.2) 
where K is a real, linear, positive-definite, symmetric integral operator and (1.2) 
denotes the real inner product over L,. A second integral equation will be derived 
for a function p ( y )  proportional to the pressure jump across the interval occupied by 
the barrier, Lb. It will be found that this may be expressed as 

Mp=l&h P E Lb, (1.3) 

( P ,  Yo) = A-1, (1.4) 

where, significantly 

and again M is a real, linear, positive-definite, symmetric integral operator. 
In each of these problems the main quantity of interest is A itself rather than u(y)  

The system (1.1) and (1.2) can be expressed in variational form by writing 
or P(Y ). 

when it is easily shown that K u  = yo is satisfied if and only if the 
stationary for small independent variations of u about its correct 
the basis for the Schwinger variational method in which we write 

N 

(1.5) 

expression (1.5) is 
value. This forms 

n=O 

and choose the an to make (1.5) stationary, the resulting value of A being a good 
approximation to the exact result. A similar approximation, namely 

N 

n=O 

can be used to obtain an approximation to A from the variational form of (1.3), (1.4) 
which is 

Here we shall choose the alternative more direct Galerkin method which has been 
shown by Jones (1964, p.259) to be equivalent to the variational approach. 

A = (MP7 P ) l ( P ,  (1.8) 
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We substitute (1.6) into (1.1) multiply by um(y) and integrate over L, to obtain 

where 

(1.10) 
n=O 

Notice that by solving (1.9) for the a,, we have established an approximation U to u, 
given by (1.6), which satisfies 

( U , K U )  = (U,VO) (1.13) 

rather than (1.1) and approximates A by (U, yo). Now 

b , W O )  - (U,VO) = ( U , W o )  - W , W O )  + (U,WO) 
= (u,Ku) - 2(U,Ku)  + ( U , K U )  
= (U - U, K ( u  - U)), (1.14) 

since K is symmetric, whence 

since (f,Kf) 2 0 for all f .  

obtain 

(U,WO) < A ,  (1.15) 

Similarly, we substitute (1.7) into (1.3), multiply by p m ( y )  and integrate over L b  to 

5 bnMmn = Gmo,  (1.16) 
n 4  

N 

(1.17) 

where 

It follows immediately that the approximations A/ and A, to A satisfy 

A/ < A < A,. (1.19) 

The success of the method depends upon a judicious choice of the functions un(y) 
and p,(y)  both to reflect the physical characteristics of the unknowns ~ ( y ) ,  p ( y )  in 
the particular problem under consideration, and to provide a form for the K,, &,, 
which can easily be computed. For the cases of just one gap and barrier, a single set 
of functions is sufficient; for two gaps or two barriers, two separate expansions are 
needed and the theory described requires slight modification. 

In the next section we formulate the problem of the scattering of an obliquely 
incident plane wave in finite water depth h by a vertical barrier with gaps (see 
figure l), and derive in detail the infinite system of equations for the a, and b, 
in (1.9), (1.16) for the separate cases of a single surface-piercing barrier and a 
submerged bottom-standing barrier, and provide reasons for the choice of u,(y) 
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and p , ( y ) .  The case of a single gap with a barrier above and below it and the 
finite totally submerged vertical barrier are also considered. Here expansions in 
terms of two sets of functions are necessary for the pressure difference and velocity 
formulations respectively since the domains of the integral equations are disjoint in 
these cases. 

In $3 the problem of scattering of an obliquely incident plane wave in water of depth 
h by two identical barriers a distance 2b apart with gaps is considered. By making 
use of symmetry arguments this problem can be replaced by two separate problems 
each involving a single vertical barrier with gaps, a distance b from a vertical wall on 
which either the potential or its normal derivative vanishes. The only modification is 
in the form of K,,, M,,,,, in the infinite system and in the connection between A in 
each case and the overall reflection coefficient. The same sets of functions used in $2 
are chosen to provide complementary bounds to A and hence estimates of JRJ, ITI. 
Of particular interest in this problem is the existence of parameter values at which 
IRI and IT1 vanish. McIver (1985) describes in detail the care required to determine 
these resonant frequencies accurately. 

In the short $4 the problem of the sloshing frequencies of water in a rectangular 
tank containing a thin vertical barrier with gaps, parallel to a pair of sides, is 
considered. The modifications to the previous cases are slight and an expression is 
obtained from which the resonant frequencies can be determined. 

Results for all these problems are presented in $5 together with a description 
of the computations involved. Thus in the case of the surface-piercing barrier 
and the submerged bottom-standing barrier, tables of A1 and A, are presented for 
typical values of geometrical and wave parameters illustrating how accurate the 
method is in determining A for moderate values of N, the truncation parameter. 
Curves of IRI and IT1 derived from A1 and A, are also shown, as a function of 
non-dimensional wavenumber and a comparison made with the exact infinite-depth 
results of Ursell (1947) and Dean (1945). Also shown is the variation of IR( and 
IT1 with the angle of incidence of the waves, for typical wavenumber and geometry. 
Similar accurate results for Al, A, are obtained in the cases of a gap in a barrier 
extending throughout the depth and a totally submerged barrier and typical curves 
of IR(, IT1 are presented. 

The interesting phenomena of zero reflection and zero transmission occur in the 
problem of two surface-piercing barriers and a table is presented which illustrates the 
accuracy of the method in determining quantities corresponding to A for this problem 
from which zeros can easily be computed. Also shown is a curve, comparable to 
that given by McIver (1985), of the first few values of the zeros as a function of 
barrier spacing. Finally for the sloshing problem a table is presented showing again 
how accurately the value corresponding to A can be determined for a range of 
geometric parameters, from which the sloshing frequencies can be determined easily 
and accurately. 

2. Scattering by a single barrier with gaps 
Cartesian coordinates are chosen with the mean-free surface y = 0. The fluid, of 

depth h, occupies 0 < y < h, -00 < x,z < 00 and the barrier with gaps occupies 
x = 0,O < y < h, -a < z < 00. We denote the barrier itself by Lb and the gaps by 
L, so that Lb U L, is [O,h]. 

It is assumed that a wave of frequency w/2a  is incident from x = +00 and is 
partially reflected at x = 0 and partially transmitted. The wave makes an angle 8 
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with the plane z = 0. Then it follows from linear water-wave theory that there exists 
a velocity potential @(x,y,z, t )  and that we may write 

(2.1) 

(2.2) 
$,, =O, y = h ,  - C O < X  < CO, (2.3) 
4 x  = 0, ( x , y )  E Lb, (2.4) 

K4 + 4 y  = 0, y = 0, (%y) $ Lb, (2.5) 

4, 4x are continuous for ( x , y )  E L,. (2.6) 

~ , ( y )  = Nil/ '  cos k,(h - y), (2.7) 

@(x, y, z, t )  = Re 4(x, y)e""e-'"' 

where I is the wavenumber in the z-direction. Then 4 ( x , y )  satisfies 

4xx + 4 y y  - 1'4 = 0, 0 < y < h, (x, y) $ Lb, 

where K = w 2 / g ,  

Vertical eigenfunctions can be constructed which are orthonormal over [0, h]. Thus 

where 
sin 2k,h 

N - -  f l - k (  l + -  2k,h ) ,  n 3 0 ,  

and where the k, are the positive roots of 

K +k,tank,h = 0, n = 1,2 ,... (2.9) 

whilst = -ik and k is the positive root of 

K = k tanh kh. (2.10) 

where d,, is the Kronecker delta. The most general solutions of (2.2), (2.3), (2.5) 
which have the correct behaviour as x -, +a are 

W 

+ ( x , y )  = (ePiCur + Reiax)yo(y) + CA,e-anxy.(y), for x > 0, (2.12) 
n=l 

and 
m 

+ ( x , y )  = Te-iaxtpo(y) + C B,eanxWn(y), for x < 0. (2.13) 

Here a = (k2 -12)1/2 = k cos 8, 1 = k sin 8, and a, = (k; + l 2 ) l I 2 .  It remains to determine 
R, T ,  A,, B, so that conditions (2.4) and (2.6) are satisfied. We define 4x(x=o = U ( y )  
and the jump in 4, [4lX4 = P ( y ) .  

fl=l 

Then from (2.4) and (2.6) 

u(y)  = 0, y E Lb, (2.14) 

P ( Y )  = 0, Y E L,, (2.15) 
Now from (2.6), (2.14) U ( y )  is continuous for y E [0, h] so from (2.12), (2.13) 

m 

W y )  = -MI - R)vo(y) - c a,A,vfl(y), (2.16) 
fl=l 
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FIGURE 1. Definition sketches: (a) a surface-piercing barrier; ( b )  a bottom-standing barrier; (c) a 
barrier with a gap; (d )  a totally submerged barrier. 

from which, after multiplying by ym(y) and integrating over [0, h], we obtain 

1 - ia(1- R) = -iaT = V(y)vO(y) dy = UO, 

where (2.14) has been used and 
N 

W Y )  = c GNfl(Y), Y E [O, hl. 
fl=O 

Application of (2.15) to (2.12), (2.13) now yields, after using (2.18), (2.19), 

Ryo(y) = U(W(y,t)  dt, Y E L,, 
JL8 

where 
W 

K(Y3 t )  = C(aflh)-'vfl(Y)vfl(t). 
fl=l 

Defining u ( y )  by U(y) = Ru(y)  and using (2.18) now gives 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

Notice that (u,Ku) = (u,Ku) and (u ,Ku)  2 0, for all u, u, using (2.22) to (2.24). Notice 
also that it follows immediately from (2.24) that 

R = ah/(ah + a), (2.25) 

whilst from (2.18) 
T = il/(ah + il), (2.26) 

and, since from (2.23), (2.24), A is real, lRI2 + JTI2 = 1 as expected from energy 
considerations. 
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we make the approximation (1.6) leading to the system (1.9), (1.10) where here 
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We now assume we have just a single gap and, as described in the Introduction, 

01 

Kmn = (Kun,Um) = C(arh)-'FmrFnr, (2.27) 
r = l  

with 

~ m n  = (Yn, urn) = J ,  urn(Y)Yn(Y) dy, (2.28) 

and (2.22) has been used. The resulting approximation A1 < A is then given by (1.10). 
A similar integral equation for P ( y )  can be obtained as follows. From (2.12), (2.13) 

W 

P ( Y )  = 2RYo(Y) - 2 c a,'~nY.(Y), Y E 10, hl, (2.29) 

where (2.18), (2.19) have been used. Thus, multiplying by ym(y) and integrating over 
[O, hl 

(2.30) 

n=l 

- 2a;'un = - 

where (2.15) has been used, and where 

P(y)w, (y)  dy = P,, ' l b  
m 

P(Y) = C P n Y f l ( Y ) ,  

4 1  - R)Wo(Y) = c ~nAnYn(Y) 

Y E [O,hI. 
n=l 

Application of (2.14) to (2.16) now yields, for y E Lb, 
W 

from (2.19), 

from (2.31) or, writing P ( y )  = -2ih2a(l - R)p(y) ,  
a, 

and from (2.30), 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

Notice that, unlike in the case of the velocity u(y), we cannot immediately inter- 
change the summation and integration in (2.34) to obtain (1.3), (1.4) since the 
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resulting infinite sum is divergent. A recent study of the numerical solution of 
the hypersingular integral equation obtained if the limits are interchanged has 
been made by Parsons & Martin (1994). We can however continue to apply the 
Galerkin method as before, and, assuming initially that there is just a single 
barrier, we can choose an appropriate set of functions and expand p(y )  in the 
form 

N 

P ( Y )  = C bnpn(y), 
n=O 

substitute into (2.34), multiply by p,(y) and integrate over L b .  The result is 
N 

n=O 

where 
W 

r=l 

with 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

and we have assumed that the eventual choice of p,(y)  ensures the convergence of 
the series defining Mm. Then A-' is approximated by 

N 

C baGd = A,' < A-', (2.40) 
n=O 

since 

(2.41) 

It follows that 

Ai < A < A,, (2.42) 

It remains to choose the functions un(y), p , (y)  appropriate to the particular config- 
with corresponding complementary bounds on (R1, IT1 from (2.25), (2.27). 

uration being considered. 

2.1. The surface-piercing barrier 
We assume a single surface-piercing barrier of length a so that Lb is (0,a) and 
L, is (a,h).  An analysis of the flow close to the edge of the barrier reveals that 
u(y)  - (y--a)-'l2 as y + a+ and since +y = 0 on y = h, 4 and hence u(y)  a 4 x I x ~  can 
be continued as an even function of y across y = h. Therefore the even continuous 
function { ( h  - a)2 - ( h  - J J ) ~ } ' ' ~  u(y) can be expanded in (a,h) in a complete set 
of even Chebychev polynomials. Thus, anticipating subsequent simplifications, we 
choose 
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where T,(x) = cos no, x = cos 8, whence 
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h 

F m n  = u m ( Y ) v n ( Y )  dy 

after putting h - y = (h  - a)t, 

= Ny'/2J2m {kn(h - a)} (2.44) 

(Erdilyi et al. 1954, $1.10, equation 2) whilst 

FmlJ = (-1)"N;1/212m { k ( h  - a)} , (2.45) 

where J,, I, are the Bessel function and modified Bessel function of order n respec- 
tively. Thus from (2.27) 

co 

K m n  = C(Nrarh)-'Jzm {kr(h - a)> ~ 2 n  {kr(h - a)> (2.46) 

In choosing the functions p,(y) we bear in mind the free surface condition (2.5) 
and the behaviour p(y) - ( a  - y)'j2 as y 4 a- deduced from a consideration of the 
flow field in the neighbourhood of y = a. Thus we choose p,(y) to satisfy 

r=l  

K P n ( Y )  +P' , (Y)  = 0, 
P , ( Y )  = 0, 

Y = 0, 
Y = a. 

It is convenient to introduce a reduced function j jn(y)  defined by 

M Y )  = Pfl(Y) - K LU PdY) dt, 

from which it is easily verified that 

fi',(Y) = 0, 
M Y )  = 0, 

Y = 0, 
Y = a. 

Now 

(2.47) 
(2.48) 

(2.49) 

(2.50) 
(2.51) 

~ m n  = lo Pm(Y)vn(Y) dy 

- - N,-l/2 [pm(y)coskn(h - Y) dy 

= Nil/'  cos k,h 1' Bm(y)  cos k,y dy, 

after integration by parts. Condition (2.50) permits the extension of jn(y) into (-a,O) 
as an even function of y and taking into account (2.51) and subsequent simplifications 
we write 

(2.52) 

where Un(x) = sin(n + l)O/ sin 8, x = cos 0 is the orthogonal Chebychev polynomial 
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of the second kind. It follows that 

(Erdklyi et al. 1954, $1.10, equation 3), whilst 

(2.53) 

(2.54) 

Note that the knh factor in the denominator of (2.53) ensures that the sum in (2.38) 
converges and we have 

m 

Mm, = C alh(krh)-2N;1 C O S ~  krhJh+l (kra) J2n+l (k,a) . (2.55) 
r=l 

2.2. The submerged bottom-standing barrier 
We assume a submerged barrier extending upwards a distance h - b from the bottom, 
so that Lb is b < y < h whilst Lg is 0 < y < b. 

We have 
b 

~ m n  = 1 U r n ( y )  cos kn(h - Y )  d y  

b 

= Nl1I2  cos knh &(y) cos kny dy, (2.56) 

where 

and 

Choosing 
u",(y) = 0, y = 0. 

now gives 

with 
Fm, = cos k,h J2m (knb), 

Frno = (-1)rnNt1/2 coshkh I h  ( kb ) ,  

~ m n  = 1 prn(Y)tyn(Y) dy, 

whilst 

where we choose 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

2(-l)" { ( h  - b)2 - ( h  - Y ) ~ } " ~  
G r n  ("') y E [b, hl (2.63) 

prn(y)  = n(2m + l ) (h  - b)h h - b  ' 
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yielding 
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and 

2.3. A barrier with a single gap 
We assume L, is a < y < b so that Lb is (0,a) u (b ,h)  and two separate expansions 
will be needed for the pressure difference in this case. 

The square-root singularities at the edges y = a,b suggest that we expand the 
continuous function (y - a)'12(b - y)'I2u(y) in terms of the complete Chebychev 
polynomials T, over [a, b]. Thus we write 

whence 

Tm(t)  cosk,(h - c - dt) dt, 

where c = $(u + b) ,  d = l ( b  - a) .  So 2 

F,, = N,- ' /~  cos(k,(h - C) - ;rna)Jm (k,d) (2.67) 

(Gradshteyn & Ryzhik 1981, p.402) so that 

F2m.n = (-1)mNi1/2 cos kn(h - C) J 2 m  (knd) , 
F ~ + I , ~  = (-l)m+1N;1/2 sink,(h - c) Jh+l (k ,d ) ,  

(2.68) 

(2.69) 

whilst 

(2.70) 

F2m+1,0 = -N&'/2 sinhk(h - C) I h + l  (kd) . (2.71) 

The integral equation for the pressure difference now involves two disjoint intervals 
L1 = (0,a) and L2 = (b ,h )  so we need to modify slightly the theory given in the 
Introduction. Thus we write (1.3) as 

(2.72) 

(Yo, P) = (Y0,P)I + (Yo, PI2 = A-', (2.73) 
where the suffix i refers to the interval Li, i = 1,2. A different set of functions is 
appropriate to each interval so we write 

F24 = No -112 cash k(h - C) Z h  (kd)  , 

MP = MlP + M2P = Yo, Y E Ll u L2, 

(2.74) 
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where here p t ) ( y )  are the sets of functions chosen as the expansions of p ( y )  in the 
surface-piercing (i = 1) and bottom-standing ( i  = 2) problems. Substitution of (2.74) 
into (2.72), multiplication by first p!) (y)  and then pE) (y )  and integration over L1 and 
L2 respectively, gives 

N 

C { b,,M;) + C , M ~ Z ) }  = ( p i ) ,  yo)' = P,$, 

C { b,,ME') + c , M ~ " }  = ( p g ) ,  y0)2 = P Z ,  

(2.75) 
n=O 

N 

(2.76) 
fl=O 

whilst 

(2.77) 

Pi ;  = (p!), . w ~ ) ~  = p!)(y)v),,,(y) dy, i = 1,2. (2.79) 

Note that Pi!,, i = 1,2 are identical to (2.53) and (2.64) occurring in the single 
surface-piercing barrier and bottom-standing barrier problems respectively. 

/L ,  

2.4. The totally submerged barrier 

We assume that the barrier occupies a < y < b so that Lb is (a,  b )  and L, is (0, a)U(b, h) 
and so two separate expansions are needed for the velocity in each of the gaps. 

The only requirement on p, (y ) ,  y E (a,  b), is that p ( y )  - (y - a)ll2 as y + a+, 
p ( y )  - (b  - y)'12 as y + b-, and we need to use the full set U, of second-kind 
Chebychev polynomials here. Thus we choose 

whence 

( y  - a)'/2(b - y)'" Urn (";:; ' )  cosk,(h - y )  dy 
b 

Gm = 1 n(m + 1)dh 

- - dN"'2 /' (1 - t 2 ) l I 2  Urn@) cos k,(h - c - d t )  dt, 
n(m+ l )h  -1 

where c = h - ;(a + b), d = i ( b  - a)  as in the previous problem. After some 
manipulation we find 

G,, = NL'/2(k,d)-' cos(k,(h - C )  - kmn)Jm+l (k,d),  (2.81) 
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whilst 

For the velocity formulation, we choose 

(2.82) 

(2.83) 

(2.84) 

(2.85) 

(2.86) 

where here ut)(y), are the sets of functions chosen for the expansion of u(y) in 
the surface-piercing (i = 2) and bottom-standing (i = 1) problems. Following the 
procedure used for the disjoint intervals in the gap between two barriers, we finally 
obtain 

with 

Here 

r=l 

whilst 

(2.87) 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

Note that U$,, i = 1,2 are identical to (2.60) and (2.44) occurring in the single bottom- 
standing barrier of length h - a and surface-piercing barrier of length b problems 
respectively. 

3. Scattering by two identical barriers with gaps 
As a second illustration of the method we consider the scattering of an obliquely 

incident wave in finite depth h by two identical vertical barriers with gaps occupying 
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the planes x = f b .  From symmetry considerations it is possible to express the 
time-independent potential 4(x ,  y) defined by (2.1) in the form 

(3.1) 

( 3 4  

4(X,Y) = @ ( X , Y )  + V(X,Y), 
where 

> *  

4"%Y) = 4 " - X , Y )  
4 " ( X , Y )  = - 4 " ( - X , Y )  

We need only consider x 
satisfy (2.2) to (2.6) as before but in addition we have 

0, using (3.2) to extend the solution into x d 0. Then 

from (3.2). An appropriate form for ~#9 is 
rn 

@(x, y )  = ( e - i 4 - b )  + RseiNx-b) ) w O ( Y )  + C Ane-an(x-b)vn(y), x > b, (3.4) 
n=l 

rn 

@(x, y )  = Bi cos ax y o ( y )  + B: cosh a,x y , (y ) ,  0 < x < b, (3.5) 

whilst @(x,  y )  differs only in replacing RS by R" in (3.4) and cos ax, cosh a,x by sin ax, 
sinh a,x in (3.5) with different coefficients B,", B,". 

n=l 

It follows that 

(3.6) 
where IRS~"I = 1. A matching of 4'9" and @? and use of the Galerkin method as 
before produces the following changes. The K,, in (2.27) now includes the factor 
(1 + coth arb) for @ and (1  + tanh arb) for @ whilst A in (2.24) is replaced by 

R = i ( R S  + R"), T = i(RS - R'), 

iah(RSe2'& - 1) 
(Re2'& + 1) + i(RseZid - 1) cot ab' 

As = 

in the symmetric case and by 

iah(Rae2iC'b - 1) 
(RaeZiab + 1) - i(RaeZiOrb - 1) tan ab' 

A" = 

(3.7) 

in the antisymmetric case. 

(1 + tanh arb)-' for @. 
The corresponding change to M,, in (2.38) is the factor (1 + coth arb)-' for @ and 

4. The sloshing problem 
The same technique can be applied to determine the sloshing frequencies in a rectan- 

gular tank with a baffle consisting of a thin vertical barrier with an arbitrary number 
of gaps. A particular case of this problem was considered by Evans & Mclver (1987). 
We assume that the baffle separates the tank into two regions, -b d x 6 0 and 
0 d x < c, b + c = d, and the tank occupies -b d x < c, 0 < z < f, 0 < y < h. Then 
the only changes required are that the term eilZ in (2.1) is replaced by coslz where 
If = mn, m = 0,1,2,. . . and that (2.12), (2.13) are replaced by 

A, cash an(x + b)vn(y ) ,  
Q) 

4 ( ~ ,  Y )  = A0 cos a(x + b)vo(y)  + -b < x 6 0, (4.1) 
n=l 
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00 

4 ( ~ ,  y) = BO cos U(C - X ) ~ O ( Y )  + C Bn cash un(c - X ) v n ( y ) ,  0 Q x Q C .  (4.2) 
n=l 

The result of repeating the development leading to (2.27), (2.38) is to include a factor 
(coth arb + coth arc) in K,, and (coth urb + coth urc)-' in M,, while A is replaced by 

uh sin ub sin uc 

sin ad 
A(s) = (4.3) 

The problem is reduced to determining 
u = u(P), p = 1,2, .  . . and determining the sloshing frequencies omP from 

and hence, for given b, c, f ,  solving for 

o2 = gk tanh kh (4.4) 

where k2 = l 2  + u2 with 1 = m n / f ,  m = 0, 1,2,. . .. 

5. Results 
Common to all problems considered in this paper is the computation of a quantity 

related to global quantities of interest for the particular problem. 
In each case we have established complementary bounds for A but only (2.22) 

translates into complementary bounds for IRI. However, we shall obtain such close 
bounds for A that the results for R, RS, Ra or the sloshing frequencies in (2.25), (3.7), 
(3.8) or (4.3) will be equally close if not complementary. 

The numerical procedure we use is common to all the problems considered. To fix 
ideas we illustrate in detail what is involved in the case of the single surface-piercing 
barrier. In order to solve for Al, A,  we must first compute K,,,, M,, given by (2.46) 
and (2.55) for m, n = 0,. . . , N. Each entry consists of an infinite sum which is evaluated 
by truncation. It is noted that, as in all the problems considered in this paper, the 
infinite series decays like O( l/r2) and thus many terms are needed to yield accurate 
entries for K,, M,,,,,. For a given truncation size M ,  say, it is possible to significantly 
increase the accuracy of these entries with little extra effort. Using the well-known 
fact krh - r x  as r + co and the asymptotic behaviour of Jn(x)  for large x it is readily 
shown that, as T + co, 

and 

where 

So, in writing 
sr = (1 - sin 2rxa/h)/r2.  (5.3) 
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a/h = 0.1 
N A l ( <  A <) A. 

0 2.551449 10.225129 
1 10.020323 10.225129 
2 10.223271 10.225129 
3 10.224647 10.225129 
4 10.225108 10.225129 
5 10.225129 10.225129 

a / h  = 0.5 

2.6402985 2.6424255 
2.6420460 2.6420502 
2.6420501 2.6420502 
2.6420501 2.6420502 
2.6420501 2.6420502 
2.6420501 2.6420502 

AI (< A <I A" 
a / h  = 0.9 

4 (G A <I A. 

0.7358405 0.7451010 
0.7358405 0.7360358 
0.7358405 0.7358475 
0.7358405 0.7358407 
0.7358405 0.1358405 
0.7358405 0.7358405 

TABLE 1. Al, A, for a surface-piercing barrier with ka = 0.5,O = 0 

with 

r=M+l 

we are including the leading-order asymptotic behaviour of the original series and 
neglecting only the O( l/M4) terms. This contrasts with a straightforward truncation of 
the series where the O(l/M2) terms are ignored. We use lo6 terms in the computation 
of S; this is a relatively quick calculation to perform owing to the simplicity of Sr in 
(5.3). It is noted that S does not depend upon m, n, or the wavenumber k, and thus 
need only be calculated once for a particular geometry. A similar approach is used for 
all the problems considered in this paper to improve the convergence of the infinite 
sums. The number of terms required to guarantee a given accuracy in the elements 
K,, M,, varies with the geometry being considered. Thus, for typical geometries, not 
involving very small gaps or very small barriers where almost total reflection or total 
transmission occurs, the above procedure enables 8-figure accuracy in K,, M ,  to 
be achieved with M - 500 and the values obtained for A1 and A, from solving (1.9) 
and (1.16) differ only in the seventh figure for N - 5. In the extreme cases mentioned 
above it is necessary to choose larger values of M and N for similar accuracy but 
it will turn out that in these cases one or other of the formulations, but not both, 
converges to the solution for values of N as low as 0 or 1. Following extensive 
numerical experiments the values of M = 500, N = 4 were chosen to produce the 
graphs in all cases, it not being possible to distinguish the curves derived from the 
two formulations, and a value of M = 2000 was used in producing the numbers in 
the tables shown. For a discussion of the choice of N ,  M to ensure convergence of A 
in a related problem, see Wu (1973). 

Having determined K,, M,, and solved the systems (1.9) and (1.16) for a given 
truncation size N, AI,  A, are computed from (1.10) and (1.17). The results for the 
single surface-piercing barrier are summarized in table 1 which shows clearly the 
accuracy of the numerical method. 

The table shows the values of A,, A,, respectively the lower and upper bounds on A, 
when the barrier is submerged to depths a / h  = 0.1, 0.5, 0.9 in normally incident waves 
with non-dimensionalized wavenumber ka = 0.5 in each case. The truncation size, 
N, is increased from 0 (equivalent to a one-term variational approximation) until the 
discrepancy between the upper and lower bounds, A!, A,, is such that 7-figure accuracy 
is obtained in A. From (2.25), (2.26) this translates into complementary bounds on 
the reflection and transmission coefficients with the same order of accuracy in them. 

It is clear from the table that N = 5 is sufficient to determine A to 7 significant 
figures at this typical wavelength for both a short barrier ( a / h  = 0.1) or for a small 
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b / h  = 0.1 b / h  = 0.4 b / h  = 0.8 
N 
0 3.0956544 3.4337470 3.2771580 3.2804826 20.855972 31.981896 
1 3.0956752 3.0999419 3.2798358 3.2798363 3 1.947507 31.981895 
2 3.0956752 3.0957406 3.2798362 3.2798362 31.981683 31.981895 
3 3.0956752 3.0956772 3.2798362 3.2798362 31.981894 31.981895 
4 3.0956752 3.0956752 3.2798362 3.2798362 3 1.981895 31.981895 

TABLE 2. A,,  A, for a bottom-standing barrier with kb = 0.2, 0 = 0 

A1 (< A <I A, A1 (< A <I A, A1 (< A <) A" 

gap beneath the barrier ( a / h  = 0.9) and indeed N = 1, corresponding to a 2 x 2 
system, is sufficient to give 1% accuracy in all cases. Even more remarkable is the 
accuracy of the one-term (N = 0) approximation to A[ in the velocity formulation in 
the case of a small gap or the one-term approximation to A, in the pressure difference 
formulation in the case of a small barrier. This can be explained as follows. In the 
case of a small gap, the fluid motion is determined by a rapid flow close to the edge 
of the barrier which is well modelled by the square-root singularity in %(y). Equally, 
in the case of a small barrier the pressure difference is dominated by its behaviour at 
either end, which is again correctly modelled by the choice of po(y ) .  Similar accuracy 
is achieved for 8 # 0, or obliquely incident waves. 

The only change required for the bottom-standing barrier is in the use of (2.60), 
(2.61) and (2.64), (2.65) for F,, and G, in (2.27) and (2.38). Thus table 2 illustrates, 
for 8 = 0, the accuracy of the method for different gap ratios b /h  above the barrier 
each at non-dimensionalized wavenumber kb = 0.2. Here N = 4 is sufficient to 
achieve 7-figure accuracy and again we see the power of a one-term approximation 
to A1 in the velocity approximation in the case of small gaps (b /h  = 0.1) and a 
one-term approximation to A, in the pressure difference formulation in the case of 
small barriers ( b / h  = 0.8) 

The results shown in tables 1 and 2 were chosen to correspond to representative 
values of barrier geometry and incident wavenumber. Other values of wavenum- 
ber produce equally accurate results for A and hence R or T and the results are 
illustrated in figures 2 and 3. Figure 2 shows the variation of IR1 and IT1 with non- 
dimensionalized wavenumber ka in the case of the scattering of a normally incident 
wave by a surface-piercing barrier of length a in water depth h. For long waves, 
corresponding to low wavenumbers, the potential behaves like a uniform horizontal 
flow far from the barrier and so all the wave energy is transmitted through the gap 
in the barrier. For short waves, or large wavenumbers, most of the wave energy is 
located near the free surface so that a large proportion of the wave energy is reflected 
by the barrier and only a small amount will 'leak' under the barrier. The exact results 
for the scattering by a barrier in infinite depth due to Ursell (1947) are also shown 
in figure 2. It can be seen that a barrier submerged to approximately one tenth of 
the water depth can effectively be regarded as being in infinite-depth water at all 
wavenumbers. 

The results for the scattering of a normally incident wave by an bottom-standing 
barrier extending from the bottom to a point b beneath the free surface in water 
of depth h are shown in figure 3 where curves of IRI and IT1 are drawn against 
dimensionless wavenumber kb. For kb small, the same arguments as for the surface- 
piercing barrier show that near total transmission occurs, but in this case in the limit 
of short waves, or kb large, the waves are confined to the surface and again most of 
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ka 
FIGURE 2. IRI, IT( for a surface-piercing barrier in normally incident waves: -, a / h  = 0.1; 

- - - , a/h  = 0.5; . * ., a /h  = 0.9; 0, infinite depth. 

0 0.2 0.4 0.6 0.8 1 .o 
kb 

RGURE 3. IRI, IT1 for a bottom-standing barrier in normally incident waves: -, b / h  = 0.1; 
- - -, b / h  = 0.2; . * * ,  b / h  = 0.4; - - , infinite depth. 
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FIGURE 4. IRI, IT1 against 0 for a surface-piercing barrier with a/h = 0.5 in obliquely incident 
waves: -, ka = 0.5; - - - , ka = 0.8; *.., ka = 1.0. 

the energy is transmitted. Thus for a given b /h  there exists a unique value of kb at 
which IT1 is a minimum and IR1 is a maximum. This contrasts with the special case 
of a submerged barrier in infinitely deep water solved exactly by Dean (1945). In 
this case very long waves are confronted with a very long barrier and total reflection 
occurs in the limit kb + 0. This difference in behaviour for long waves means that 
for a barrier occupying almost all the depth, i.e. b /h  = 0.1, then good agreement with 
the infinite-depth result only occurs for kb > 0.5. 

The effect on lRI, IT1 of varying the angle of incidence is shown for the surface- 
piercing barrier in figure 4 and for the bottom-standing barrier in figure 5. In each 
case IRI and I TI decrease and increase monotonically (respectively) with increasing 
incidence angle, 6. 

For a barrier with a single gap the changes necessary in the velocity formulation are 
slight, involving the use of (2.67) for F ,  whilst the pressure formulation necessitates 
the solution of the coupled system (2.75), (2.76) prior to computing A, from (2.77). 
Despite this, the accuracy of the method is maintained and again a truncation of 
N = 5 is sufficient to assure 7-figure agreement between A1 and A,. The same is true 
for the problem of the totally submerged barrier where G, is given by (2.81) and 
where it is the velocity formulation which requires the solution of the coupled system 
(2.87), (2.88) prior to computing A[ from (2.89). There seems little merit in presenting 
detailed tables of the A1 and A, but it is worth emphasizing that, for small gaps and 
small barriers, the approximations u(y)  = %(y) and p ( y )  = p o ( y )  respectively provide 
extremely accurate values for R and T .  

The variation of JRI, (TI with dimensionless wavenumber for a barrier with a gap 
in normally incident waves (6 = 0) is shown in figure 6. Here the upper part of the 
barrier occupies (O,a), the lower part (b ,h)  so that the centre of the gap is at depth 
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FIGURE 5. (RI, (TI against 0 for an bottom-standing barrier with b / h  = 0.1 in obliquely incident 

waves: -, kb = 0.1; - - - , kb = 0.3; -.-, kb = 0.5. 
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kc 

RGURE 7. IRI, IT1 for a totally submerged barrier with c / h  = 0.1 in normally incident waves: 
- , d / c  = 0.9; - - -, d / c  = 0.5 

c = ;(a + b) and the size of the gap is 2d = (b - a). Curves for various d / c  are 
shown with fixed c / h  = 0.1. As might be expected the curves of IRI, IT1 are now more 
complicated, manifesting behaviour of both bottom-standing and surface-piercing 
barriers. For example, in very long v.'aves, kc << 1, all the energy is transmitted and 
in very short waves, kc large, all the energy is reflected as for the surface barrier, but 
in passing from long to short waves IRI first reaches a maximum, as for the bottom- 
standing barrier and then at shorter waves a minimum, before tending monotonically 
to unity as kc + 00. 

Figure 7 shows the behaviour of IRI, IT1 for a totally submerged barrier of length 
2d, centre at depth c with vaving kc and fixed c / h  = 0.1. The curves are less 
interesting than the gap case, with IR1 + 0 for both large and small kc as might be 
expected on physical grounds. Once again in each case the effect of increasing 8 is to 
reduce IRI and increase [TI. 

The scattering by two identical barriers with gaps requires only a slight modification 
to what has gone before, notably in the inclusion of extra hyperbolic terms in the 
infinite systems involving K,,, M,,, but the complicated nature of (3.7), (3.8) does 
not provide upper and lower bounds for IRI, I TI. Nevertheless the continuous smooth 
dependence of Rs, R" on As, A" and ab through (3.7), (3.8) ensures that accurate 
estimates of AS, A" result in equally accurate estimates of R and T from (3.6). 

An interesting feature of two-barrier problems is the occurrence of zeros of reflection 
at certain frequencies and, for surface-piercing barriers, zeros of transmission also. The 
former phenomenon is well-known in wave transmission problems, the latter less so. 
As described in the introduction it was first shown to occur by Evans & Moms (1972) 
and subsequently confirmed by Newman (1974) in deep water and McIver (1985) in 
finite water depth. McIver used matched eigenfunction expansions to obtain an 
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infinite system of equations for the unknown coefficients in the expansions of the 
potential and, as he pointed out, the square-root singularity at the tip of each barrier 
necessitated the use of quite large values of N, the truncation parameter, together 
with extrapolation, to achieve reasonable accuracy for R, T. To locate zeros in R 
or T he examined the phase of these complex coefficients, looking for values of 
dimensionless frequency at which the phase changes discontinuously by K radians as 
indicating a zero in R and T. He estimated that the frequencies so obtained had 
small errors in the third significant figure for the fundamental frequencies and in the 
fourth significant figure for the higher frequencies by choosing N = 400 and using 
extrapolation. 

An alternative approach is used here in which the condition for a zero of R and 
T is expressed as an equation involving A" and Aa each of which can be determined 
extremely accurately. Thus it is straightforward to show that the condition for T = 0, 
or Rs = R", reduces using (3.7) and (3.8) to 

f ( a / h ,  b/h, ah) = 2cosec2ab - ah((As))-' - (An)-') = 0, 

g(a/h,  b/h, ah) = AS cot ab - A" tan ab - ah = 0. 

(5.7) 

whilst the condition for R = 0, or Rs = -R", reduces to 

(5-8) 

It is clear from the simplicity of the equations (5.7) and (5.8) that accurate estimates 
of the zeros of R, T, just as for the values of R, T themselves, depend purely on the 
accuracy with which As, An can be determined. 

Again, AT,  Ay are found to be accurate over a range of geometrical and wave 
parameters with moderate N as in the single barrier case. For very small barrier 
separations or very small barriers or gaps, the same accuracy requires a larger N. 
Since the zeros of R and T are of interest in this problem, we will not present a table 
of A?, A? with varying N for a set of parameters as before, but concentrate on the 
accuracy with which the frequencies associated with the fundamental zeros of R and 
T, Ka(&) and Ka(T0) respectively, in McIver (1985) notation, can be obtained with 
moderate truncation size, N. Thus table 3 illustrates successive estimates of Ka(&), 
Ka( To) using a velocity and a pressure difference formulation for increasing N in the 
case of a /h  = 0.1 and b/a = 0.2 and normally incident waves. In order to do this, we 
fix N and apply a root-finding procedure to f and g in (5.7) and (5.8), where As@ is 
replaced in turn by the two approximations, A T ,  A?, derived from the velocity and 
the pressure difference formulations respectively, to give the two approximations to 
the zeros as shown in table 3. Here we have chosen a / h  = 0.1 and b/a = 0.2 in order 
to compare our results with McIver (1985). The parameter N is successively increased 
from 0 until the approximations to Ka(&) and Ka(To), from the two methods are 
such that they agree to five significant figures (at N = 8). This accuracy is a direct 
consequence of the accuracy with which the upper and lower bounds As@, Ay to AS." 
are found. It can be seen from table 3 that we do not have complementary bounds 
to Ka(&) and Ka(T0) and we also note that the approximation derived from the 
pressure difference formulation provides good accuracy for a truncation size as small 
as N = 1, owing to a /h  = 0.1 representing a small barrier and using the arguments 
mentioned previously. It is clear that we do not have the same accuracy as in the single 
barrier case. However N = 8 was sufficient to determine the frequencies associated 
with the zeros of R and T to five significant figures in all cases and results showing 
the non-dimensional wavenumber at which the zeros occur for varying barrier spacing 
are given in figure 8. It can be seen that as the spacing increases the zeros of T 
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bla 
FIGURE 8. The variation of the frequencies associated with the zeros of transmission and reflection 

with the barrier spacing b / a  for the case of a / h  = 0.1. 

N 
0 
1 
2 
3 
4 
5 
6 
7 
8 

WRo) 
Velocity Pressure 
0.35887 0.81381 
0.68800 0.80830 
0.77886 0.80830 
0.80131 0.80830 
0.80677 0.80830 
0.80802 0.80830 
0.80826 0.80830 
0.80830 0.80830 
0.80830 0.80830 

W T o )  
Velocity Pressure 
0.37025 0.97144 
0.74769 0.96130 
0.89227 0.96132 
0.94367 0.96133 
0.95767 0.96133 
0.96068 0.96133 
0.96122 0.96133 
0.96130 0.96133 
0.96132 0.96133 

TABLE 3. Approximations to the frequencies associated with the fundamental zeros of reflection 
and transmission for two equally submerged surface-piercing barriers, a/h = 0.1, b/a  = 0.2, using a 
velocity and a pressure method. 

coalesce in pairs. The same figure was shown in McIver (1985) who needed to employ 
interpolation techniques to determine these cut-off barrier spacings accurately. 

The final example involves the sloshing of a liquid in a rectangular tank containing 
a baffle. A root-finding procedure must be applied to the equation (4.3) with 
A?) and A t )  in turn approximating A(s) in (4.3) to provide two approximations, 
associated with the velocity and the pressure difference formulations respectively, to 
the exact sloshing frequency. The increasing accuracy of the approximations A?), 
A!) to A@) as the truncation size, N ,  is increased is reflected in the accuracy of the 
estimates to the sloshing frequencies as shown in table 4. Here we have examined 
the fundamental sloshing frequencies when the baffle is surface piercing and close to 
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ud 
N Velocity Pressure 

0 1.94095 2.21975 
1 2.17605 2.19243 
2 2.19146 2.19232 
3 2.19230 2.19232 
4 2.19232 2.19232 

TABLE 4. Approximations to the fundamental sloshing frequencies for a surface-piercing baffle in 
a rectangular tank using a velocity and a pressure difference method with a / h  = 0.4, b / d  = 0.05, 
h / d  = 1.0. 

one wall (b /d  = 0.05, a / h  = 0.4, h/d = 1.0 and no cross-tank modes). Again 6-figure 
accuracy is obtained for N = 4 in this fairly extreme case. The same is true for other 
configurations and for totally submerged baffles. In all cases tested it was sufficient 
to choose N = 5 to achieve 6-figure accuracy to the sloshing frequencies given by the 
roots of (4.3). 

6. Conclusion 
A number of problems involving thin vertical barriers with gaps have been consid- 

ered using the linear theory of water waves in finite depth. In all cases it has been 
shown how certain global quantities related to the solution to these problems can be 
determined accurately by deriving complementary bounds for the parameters related 
to these quantities. 

Crucial to the method was the construction of singular integral equations for both 
the horizontal velocity of the fluid across the gap in the barrier and for the jump 
in dynamic pressure across the barrier, which enabled complementary bounds to be 
constructed. The Galerkin method, using sets of functions which accurately modelled 
both the velocity and the pressure difference, converted the integral equation into 
systems of algebraic equations resulting in extremely accurate upper and lower bounds 
with small values of truncation value N. 

Other problems can be solved by this method. These include problems involving 
the partial blocking of a two-dimensional acoustic waveguide by a thin plate or two 
identical parallel plates or the determination of the scattering of an incident plane 
wave by a vertical open-ended thin circular tube partially or totally immersed in 
water of finite depth. A more interesting extension involves the scattering of an 
obliquely incident wave by a periodic array of one or two rows of thin barriers 
extending throughout the water depth. The present theory needs to be modified to 
accomodate the complex-valued kernel K ( y ,  t )  arising in this case but this presents no 
real difficulties. Results for both of these latter problems will be published separately. 

One of us, R.P., wishes to acknowledge the receipt of SERC research studentship 
number 92004667. 



180 R.  Porter and D . K  Evans 

REFERENCES 

DEAN, W. R. 1945 On the reflexion of surface waves by a flat plate floating vertically. Proc. Camb. 

ERDELYI A., MAGNUS, W., OBERHE~ING,  F. & TRICOMI, F. G. 1954 Tables of Integral Transforms. 

EVANS, D. V. & MORRIS, C. A. N. 1972 Complementary approximations to the solution of a problem 

EVANS, D. V. 1970 Diffraction of surface waves by a submerged vertical plate. J. Fluid Mech. 40, 

EVANS, D. V. & MCIVER, P. 1987 Resonant frequencies in a container with a vertical baffle. J. Fluid 

GRADSHTEYN, I. S. & RYZHIK, I. M. 1981 Tables of Integrals, Series and Products. Academic Press. 
JARVIS, R. J. 1971 The scattering of surface waves by two vertical plane barriers. J. Inst. Appl. Maths 

JOHN, F. 1948 Waves in the presence of an inclined barrier. Commun. Pure. Appl. Maths. 1, 149-200. 
JONES, D. S. 1964 The Theory of Electromagnetism. Pergamon Press. 
LEVINE, H. & RODEMICH, E 1958 Scattering of surface waves on an ideal fluid. Math. and Stat. Lab. 

LEWIN, M. 1963 The effect of vertical barriers on progressive waves. J. Math. Phys. 42,287-300. 
MCIVER, P. 1985 Scattering of surface waves by two surface-piercing vertical barriers. ZMA J. Appl 

MEI, C. C. 1966 Radiation and scattering of transient gravity waves by vertical plates. Q. J. Mech. 

NEWMAN, J. N. 1974 Interaction of water waves with two closely spaced barriers. J. fluid Mech. 66, 

PARSONS, N. & MARTIN P. 1994 Scattering of water waves by submerged curved plates and by suface 

PORTER, D. 1974 The radiation and scattering of surface waves by vertical barriers. J. Fluid Mech. 

SMITH, C. M. 1983 Some problems in linear water wave theory. PhD thesis, University of Bristol. 
URSELL, F. 1947 The effect of a fixed vertical barrier on surface waves in deep water. Proc. Camb. 

Wu, C. P. 1973 Variational and iterative methods for waveguides and arrays. In Computational 

Phil. SOC. 41, 231-238. 

McGraw-Hill. 

in water waves. J. Inst. Maths Applics. 10, 1-9. 

433451. 

Mech. 175, 295-307. 

Applics. 7 ,  207-215. 

Tech. Rep. 78, Stanford University. 

Math. 35, 1-17. 

Appl. Maths 19,417-440. 

97-106. 

piercing plates Appl. Ocean Res. 16,129-139 

63, 625-634. 

Phil. SOC. 43, 374-382. 

Techniques ,for Electromagnetics (ed. R. Mittra), pp. 266-304. Pergamon 




